
SiD Simulations and
Benchmarking

Rob Kutschke, CD/IDS
 ILC Coordination Forum

July 17, 2007

CD-doc-2345

Outline of This Talk

• SiD Detector

• SiD Software

• Work plan
• Overview of all planned work

• Summary of Rob’s work

• Hans’ talk will give more details on
• The forward tracking work

• Simulation of Pb Glass-scintillator dual readout calorimeter

• Deadlines

2

The SiD detector

3

DETECTOR CONCEPTS

EC
A

L
Si Tracker

Vertex Detector

ECAL

m
uon system

H
C

A
L

HCAL

solenoid

muon system

FIGURE 3.1. Illustration of a quadrant of SiD

are tolerant of background mishaps from the machine, the vertex detector, the tracker, and
the calorimeter can all absorb significant radiation bursts without ‘tripping’ or sustaining
damage, thereby maximizing running efficiency.

The SiD concept recognizes the fundamental importance of calorimetry for ILC physics,
and adopts a strategy based on Particle Flow Calorimetry. This leads naturally to the choice
of a highly pixellated silicon-tungsten electromagnetic calorimeter, and a multi-layered, highly
segmented hadron calorimeter. Achieving excellent jet energy resolution requires both the
calorimeters to be located within the solenoid. Since a high granularity silicon-tungsten
calorimeter is expensive, as is a large solenoid, cost considerations push the design to be as
compact as possible, with the minimum possible radius and length. The use of a high field
solenoid (5 Tesla) compensates for the reduced radius by improving the separation of charged
and neutral particles in the calorimeters. Given the high field, an all-silicon tracker, with its
high intrinsic resolution, can provide superb charged particle momentum resolution, despite
the limited real estate. The high field also constrains e+e−-pair backgrounds to minimal
radius, and so allows a beampipe of minimal radius for high performance vertex detection.

The SiD Starting Point is illustrated in Figure 3.1. The overall SiD design, its perfor-
mance, and technology options are described in more detail in Ref. [6].

The SiD baseline detector has the following components, moving from small to large radii:

• The vertex tracker has five barrel layers of pixel detectors augmented with four endcap
layers on each side, beginning at a radius of 1.4 cm and extending to 6.1 cm. The

20 ILC-Detector Concept Report

SiD Tracking System, Vertical Section

4

6/1/2007 Kutschke - SiD Tracking 3

Vertical Section
164.1 cm

1
2

5
 c

m

5 Layer Barrel Tracker (axial strips)

Forward Tracker Disks (crossed strips)

Vertex Detector (pixels)
Beampipe

End cap Tracker Disks (crossed strips)

Detail Near Beam Line

5

6/1/2007 Kutschke - SiD Tracking 4

Detail near Beamline
Barrel Tracker Layer 1

5 Layer Vertex Barrel

4 forward disks

Forward tracker disk

3 forward disk inserts

End cap tracker disk

Vertex Endcap (4 pixel layers)
Vertex Barrel (5 pixel layer)

Forward Tracking (3 pixel layers)

!"#$"%#&' ()%*+,-./01 2$34#&5$6!"#$"%#&'7)%*+,-./0 72$34#&5$6

StdHep

Events SLIC
LCDD

XML
Compact

XML

LCIO
Geom

Converterorg.lcsim
Events

Converterg

AIDA HepRep

XML
Conditions

User Analysis

Drivers

JAS3
Software D t F t

8

WIRED4
Software

Package
Data Format

SiD Software Overview

6

SiD Software

• SLIC:
• C++. G4 based simulation system.

• org.lcsim
• Java based framework for reconstruction and analysis.

• Wired 4 based event display.

• GeomConverter:

• Reads “Compact Detector Description” XML.

• Native format for org.lcsim.
• Can write:

• HepRep XML for Wired-4

• LCDD XML for SLIC

• Data formats: StdHep and LCIO.

7

org.lcsim

• Java based.

• Not a full featured framework.
• Good enough for a small group with documentation

by lunch, coffee and beer:30.

• All key reconstruction codes live in user areas.
• A loose collection of disconnected tools.

• Historically user codes do not play well together.
• Hit and Track classes are deficient so everyone makes

private extentions.

• Native histogram/tuple environment:
• aida + JAS3 as a viewer; much poorer than root.

• Weak release/distribution model.

• More details in backup pages.

8

SiD Detector Models

• sid00
• Complete but simplified sensitive volumes.

• Barrel vertexer and tracker are pure cylinders.

• Endcaps are annulus of disk.

• Lots of exisiting MC needed by PFA people.

• sid01
• As above but more detail of dead material.

• Added forward tracker.

• Current official model.

• New model under development.
• Tracking elements made from wafers.

• Will need several variations, especially in forward
region, including variations of dead material.

9

Work Plan

• Forward Tracking:
• Study occupancies using existing detector models.
• Help to define the new detector model

• Includes dead materials

• Real track reconstruction in forward region.
• Includes pattern recognition and fitting in presence of

backgrounds.

• Simulated analyses.
• SiD at FNAL web site.
• Simulate the Pb Glass-scintillator cal.

10

Plus whatever infrastructure work is implied

Work Plan - Next Level of Detail

1. Study occupancies, using existing models.
2. Bookkeeping and Infrastructure improvements:

• Help to define new detector model.
• Details on next page.

3. Get Kalman filter working as a final fitter.
4. Enhancements to org.lcsim

• Real pattern recognition in forward region.
• “Port”/exercise existing code:

• Vertexing/Jet Finding/Jet Flavor Id/

5. Simulated Analyses
• B(H→b bbar) and B(H→c cbar).

6. FNAL web site.
7. Simulate Pb Glass-scintillator calorimeter

11

Bookkeeping and Infrastructure

• Classes that need to be fixed:
• RawTrackerHit (sort of a digi)

• Track

• New classes needed:
• Clusters of digis and clustering algorithms.

• Bookkeeping of used hits.

• Collection of muon and electron candidates.

• We are waiting on code to create RawTrackerHits
from SimTrackerHits (create digis from hits).

• We can create classes but not persist them!
• Agitate for a new persistency model.

• Effort slowed by demand that all persistent classes
be usable by all detector concepts.

12

Work Plan - Who is doing What

1. Study occupancies, using existing models.
• Fransisco supervised by Hans.

2. Bookkeeping and Infrastructure improvements:
• Help to define new detector model.

• Geometry back end being done at SLAC.
• Hans and students: work with Bill Cooper (PPD) for models

of support and variations on the wafer layout.

• Hit, Track and e/mu classes:
• Rob and Hans with input from SLAC and others.

3. Get Kalman filter code working.
• Rob

13

Work Plan - Who is doing What

4. Enhancements to org.lcsim
• Real pattern recognition in forward region.

• Hans. This is by far the biggest job.

• “Port”/exercise existing code:
• Vertexing/Jet Finding/Jet Flavor Id/
• Rob

5. Simulated Analyses
• B(H→b bbar) and B(H→c cbar).
• Rob. Will be done in several iterations.

6. FNAL web site.
• Lynn and Rob

7. Simulation of Pb Glass-scintillator dual readout cal.
• Implementation is almost complete. Hans.
• Adam will take it from there.

14

Web Site

• ilc.fnal.gov undergoing redesign by Shekhar Mishra
• Helped by Shilpee Arora and Liz Clements.

• Top 4 levels are controlled by Shekhar

• Targeted at a broad audience.

• Pages useful for us can be linked from level 4 pages.

• Path to our pages:
• Level 2: “Detector R&D”

• Level 3: ”Physics and Simulation”
• Level 4: “Simulated Analyses of Benchmark Processes”

• Level 4: “Simulation and Reconstruction Software”

• Draft page (still in a very early stage):
• ilc.fnal.gov/detector/rd/physics/technical/

15

Rob’sWork

• Work with Hans and rest of SiD to define the
missing infrastructure:
• If it takes too long, we will give up and roll our own.

• We know what we want.

• Learn/Port several codes:
• Kalman filter

• Vertex fitting

• Jet finding

• Flavor tagging

• B(H→b bbar) and B(H→c cbar).

• Help with overall design of our website.

16

Relevant Deadlines

• ALCPG October 22-26, 2007 at FNAL
• First pass at one benchmark study for CDR.

• Spring 2008
• Software for CDR benchmarks essentially complete.

• CDR benchmark studies underway.

• Start writing CDR.

• Fall 2008
• Submit CDR.

17

Deadlines with Added Detail

• ALCPG October 22-26, 2007 at FNAL
• Occupancy studies and most infrastructure done.

• Kalman filter and other “ported” codes working

• First release of detector built of wafers sometime in
the summer.

• First pass on one simulated analysis.

• Spring 2008
• Our software working well enough for general use.

• Continued improvements.

• Several simulated analyses underway. TBD.

• Start writing CDR.

• Fall 2008
• Submit CDR.

18

Summary

• We have agreed to a list of jobs:
• Lots of forward tracking.

• One simulated analysis.

• Precursor infrastructure work that is implied by this.

• FNAL web site.

• Simulation of Pb Glass-scint dual readout calorimeter.

• We have a rough outline of who is doing what with
specific deadlines for the October ALCPG meeting
and less specific details for afterwards.

19

Backup Slides

org.lcsim

• Java based.

• Can be run standalone or within JAS3.
• Documentation/examples are JAS3-centric.

• Framework runs the event loop and executes a list
of “drivers” specfied by the user.

• Driver:
• What other frameworks call a module.

• Callable from the framework:
• Detector change; process event; end of data ...

• Can read event and add collections to the event.

• Can overwrite/delete collections in an event.

• Native histogram/tuple environment: aida.
• Display tools not as rich as root.

21

org.lcsim (2)

• Reconstruction code lives in user areas and is not
vetted by anyone.

• Little discipline among users to ensure that their
codes cooperate.
• Predefined classes are not rich enough for the job.

• So everyone makes their own private extensions.

• Can add these objects to the event - but no persistency.

• No method to stop my histograms or collections
from stomping on yours.

• Various “full” reconstruction codes are advertised:
• Some ran in JAS2 and are not yet ported to JAS3.

• Documentation by calling the author.

• I have not yet run any of them.

22

org.lcsim (3)

• Release model
• Infrequent releases.

• Users: copy current .jar files from SLAC

• Developers: build the head
• You just gotta know when the head is/was in good shape.

• Each user keeps current .jar files in ~/.JAS3
• Deploying a new release clobbers the old one and

you cannot backtrack unless you saved a copy ahead
of time or know the check out time of the old
version.

• Presumes that you always have internet access.
• It does cache things but you may need to know in

advance if you need to force caching.

23

